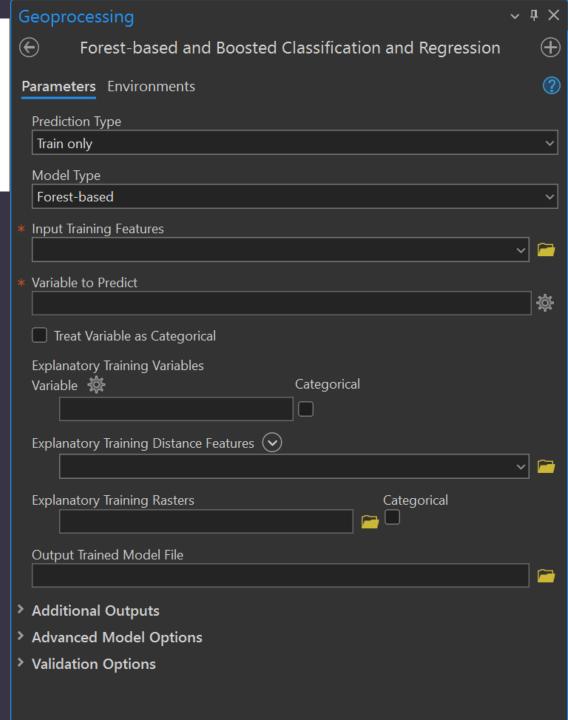

MODELING SPATIAL RELATIONSHIPS

Forest-based and Boosted Classification and Regression

RANDOM FOREST

FOREST BASED & GRADIENT BOOSTED MODELS

Forest based


- Many independent decision trees
- Each decision tree is created from a random subset of training data and explanatory variables
- Each tree generates its own predictions
- Final prediction is based on an average of all decision trees in the entire forest

Gradient boosted

- Creates a series of sequential decision trees
- Each tree is built to minimize the error (bias) of the previous tree
- Combines weak learners to become a strong prediction model

HOW TO TRAIN A MODEL

- Prediction Type
 - Train only
 - Predict to features
 - Predict to raster
- Explanatory Training Variables
- Explanatory Training Distance Features
- Explanatory Training Rasters

VALIDATION AND TRAINING DATA DIAGNOSTICS

- R-squared proportion of variance in the dependent variable that can be explained by the independent variable
- Goodness of fit
- o.o to 1.o (higher the better)
- While training, the tool reserves 10% of data for validation – it only uses 90% of the training data and uses validation data to determine how well the model performed preventing Overfitting.

R-Squared	0.84
Mean Absolute Error (MAE)	33329.726
Mean Absolute Percentage Error (MAPE)	0.194
Root Mean Square Error (RMSE)	45848.739
p-value	0.000
	0.003
Standard Error Predictions for the data used to train the model compared to the obs alidation Data: Regression Diagnostics	erved categories for those features
Predictions for the data used to train the model compared to the obs	
Predictions for the data used to train the model compared to the obsalidation Data: Regression Diagnostics R-Squared	erved categories for those features
Predictions for the data used to train the model compared to the obs	erved categories for those features
Predictions for the data used to train the model compared to the observation Data: Regression Diagnostics R-Squared Mean Absolute Error (MAE) Mean Absolute Percentage Error (MAPE)	erved categories for those features 0.705 44251.616
Predictions for the data used to train the model compared to the obs alidation Data: Regression Diagnostics R-Squared Mean Absolute Error (MAE)	erved categories for those features 0.705 44251.616

THINGS TO KEEP IN MIND...

- These tools can perform well within the range of explanatory variables used to train the model.
- Forest-based and boosted models do not extrapolate.
- Number of trees (100 by default) can be increased with the complexity of relationships between variables, size of dataset, and variable to predict.
- Tool runtime is sensitive to the number of variables used per tree.
- The tool may generate slightly different results each time due to the randomness introduced in the algorithm.

THINGS TO KEEP IN MIND...

- A "good" model is subjective and varies based on the data.
- Some industries may have a r-square value (threshold) to consider if the model is satisfactory for making a prediction.
- Refining a Model includes only most important variables. The variables with low importance that did not contribute to the model performance were excluded.
- Increasing number of trees in a model could result in a better model.
- Model Out of Bag Errors Determines how much the model performance has improved by increasing the number of trees in the model.