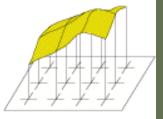
RASTER ANALYSIS

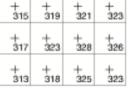
Sandeep Talasila, GISP

BASICS

- Simple data structure
- Real-world phenomena
 - Thematic land use, soils
 - Continuous data imagery, temperature, precipitation, elevation
 - Pictures scanned maps or drawings

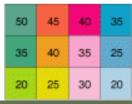
https://pro.arcgis.com/en/proapp/latest/help/data/imagery/introduction-to-raster-data.htm

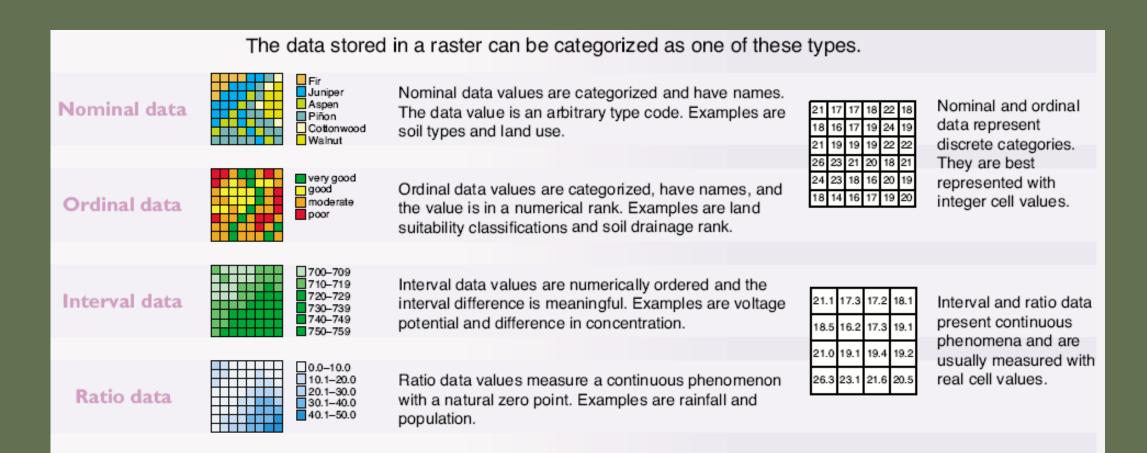

CHARACTERISTICS OF RASTER


Each cell has a value representing the attributes such as

- Category land use class: grassland, forest, urban,...
- Magnitude percent rainfall
- Height elevation
- Spectral value light reflectance

Value applies to the center point of the cell


For certain types of data, the cell value represents a measured value at the center point of the cell. An example is a raster of elevation


Value applies to the whole area of the cell

For most data, the cell value represents a sampling of a phenomenon, and the value is presumed to represent the whole cell square.

DATA TYPES AND CELL VALUES

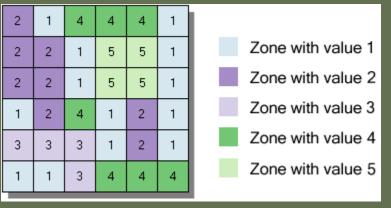
RASTER – ADVANTAGES AND LIMITATIONS

Advantages

- A simple data structure
- Format used in advanced spatial and statistical analysis
- Uniformly stores points, lines, and polygons
- Performs fast overlays with complex datasets

Limitations

- Spatial inaccuracies due to cell dimensions
- Raster datasets can be very large. Resolution increases as the size of the pixel decreases
- Loss of geometric precision

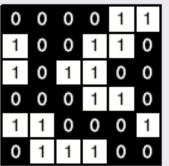

ZONES AND REGIONS

Zones

 Groups of cells with the same value that are contiguous or noncontiguous.

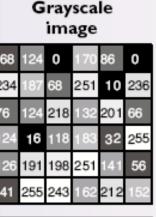
Regions

 Each group of contiguous cells that have the same value is considered a region.



desktop.arcgis.com

SINGLE BAND RASTERS


Cell values in single-band rasters can be drawn in these three basic ways.

Monochrome image

01

In a monochrome image, each cell has a value of 0 or 1. They are often used for scanning maps with simple linework, such as parcel maps.

) 255

In a grayscale image, each cell has a value from 0 to 255. They are often used for black-and-white aerial photographs.

One way to represent colors on an image is with a colormap. A set of values is arbritrarily coded to match a defined set of red-green-blue values.

Colormap

green

255

0

32

255

0

red

255

64

255

128

Ω

↔

 \rightarrow

↔

↔

2

4

5

blue

0

128

32

128

255

Display colormap

image

5

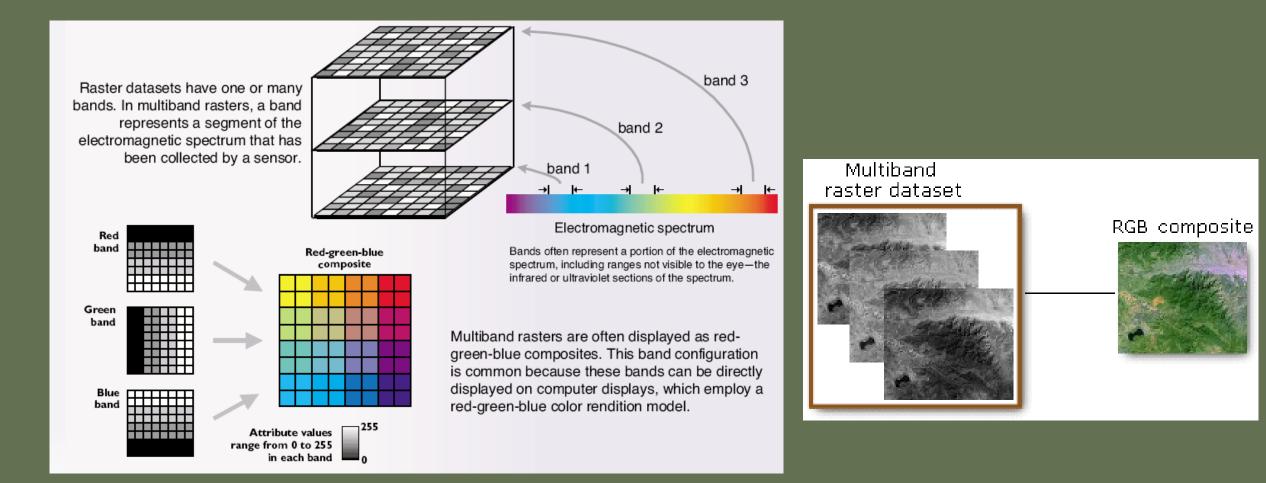
2

5 5 5

2

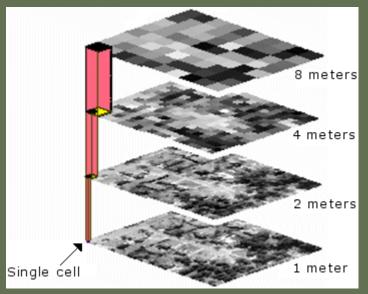
2

5

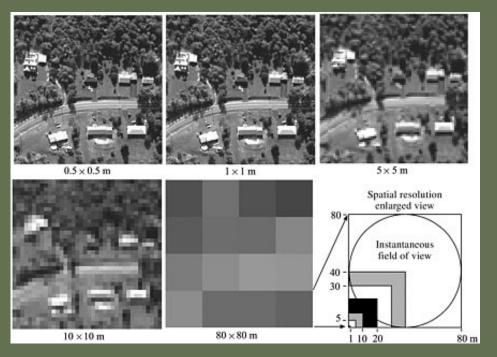

5

2 2

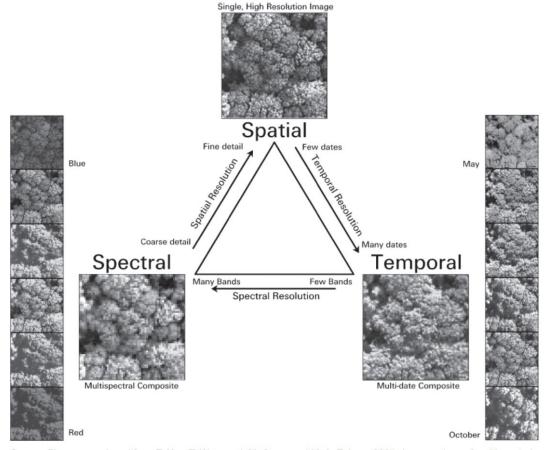
2


5

MULTIBAND RASTERS


RESOLUTION

- Spatial
- Spectral
- Temporal
- Radiometric



Spatial Resolution

RESOLUTION

www.nap.edu

Remote Sensing Source: Figure reproduced from T. Key, T. Warner, J. McGraw, and M. A. Fajvan, 2001. A comparison of multispectral and multitemporal imagery for tree species classification. *Remote Sensing of Environment* 75: 100–112.

The SAGE Handbook of Remote Sensing methods.sagepub.com

RADIOMETRIC RESOLUTION

Radiometric Resolution 8-Bit | Sentinel 2 - Tokyo Coast

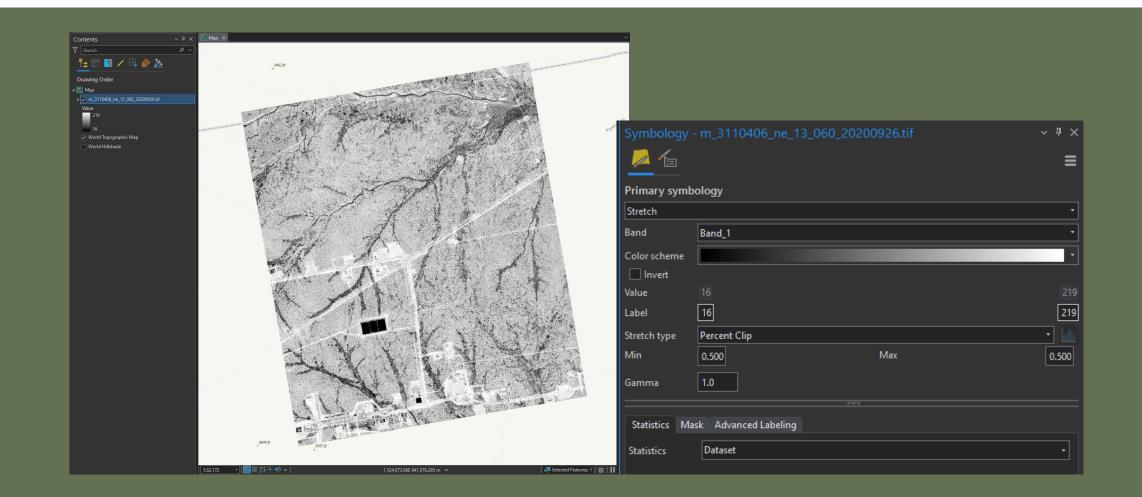
Radiometric Resolution 4-Bit | Sentinel 2 – Tokyo Coast

Radiometric Resolution 2-Bit | Sentinel 2 – Tokyo Coast

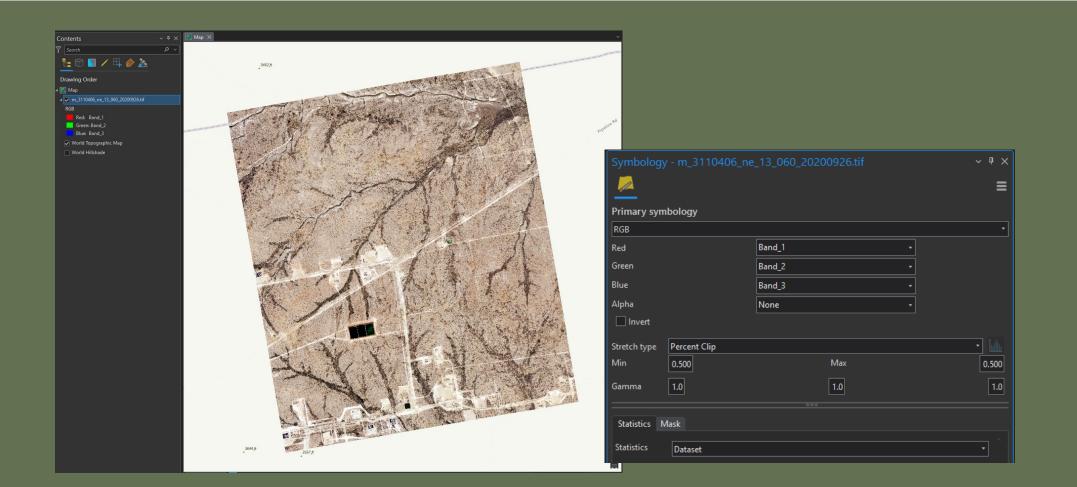
https://gisgeography.com/bit-depth/

RASTER INFORMATION

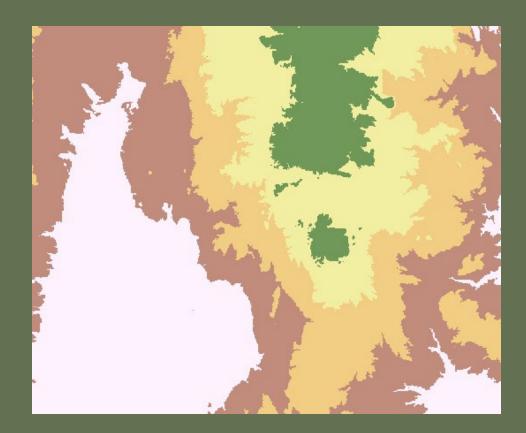
- Format type used to store the raster.
- Columns and Rows number of rows and columns.
- Number of bands number of spatially coincident layers in the raster.
- Cell Size (X, Y) size of each pixel.
- Data type/Pixel type type of values stored in the raster, such as signed integer, unsigned integer, or floating point.
- Data depth/Pixel or bit depth determines the possible range of values stored in each band.
- Statistics include the minimum value in the raster, maximum value, mean of all values, and standard deviation.
- Extents left, right, top, and bottom coordinates of the raster dataset.
- Projection raster's coordinate system.
- Size of the raster the number of rows and columns or the uncompressed size.


RASTER INFORMATION

Raster Dataset Propert General	ies : m_3110406_ne_13_060_20200926.tif			
	Find data source properties	Raster Dataset Prope	erties : m_3110406_ne_13_060_20	200926.tif 🗆 🗙
	> Data Source	General		
	Raster Information		Find data source properties	٩
	> Band Metadata		✓ Raster Information	
	> Extent		Property	Value
	> Spatial Reference		Columns	10590
			Rows	12280
			Number of Bands	4
			Cell Size X	0.600000
			Cell Size Y	0.600000
			Uncompressed Size	496.08 MB
			Format	TIFF
			Source Type	Generic v
			Pixel Type	unsigned char
	<u>о</u> к		Pixel Depth	8 Bit
			NoData Value	/
			Colormap	absent
			Pyramids	levels: 6, resampling: Nearest Neighbor
			Compression	None
			Mensuration Capabilities	Basic
			Geodata Transform	Defined

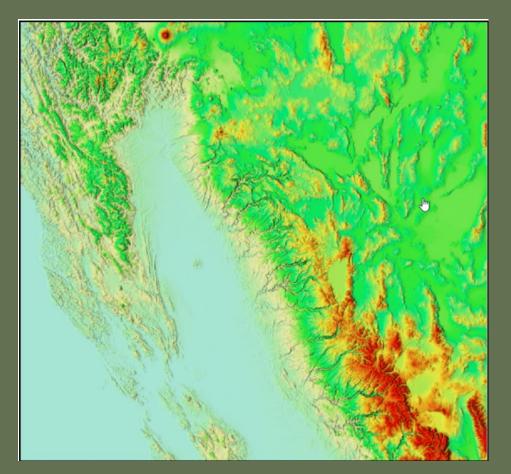

DISPLAY

- Classified using the Symbology properties
- Cells are given a solid color based on cell values
- Symbology of Imagery:
 - Stretch
 - RGB Composite
 - Classify
 - Colormap
 - Discrete Color
 - Unique values
 - Shaded Relief
 - Vector Field


STRETCH

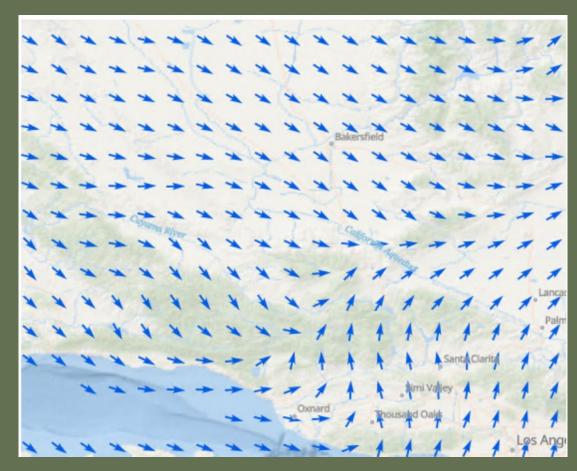
RGB COMPOSITE

CLASSIFIED


Primary symbology Classify Field Normalization No fields Method Natural Breaks (Jenks) Classes 5 Color scheme Classes Mask Histogram More -+ 0.0 Upper value Label Color ≤ 36.0 0.001 - 36 87.001 - 116 ≤ 254.0 139.001 - 254

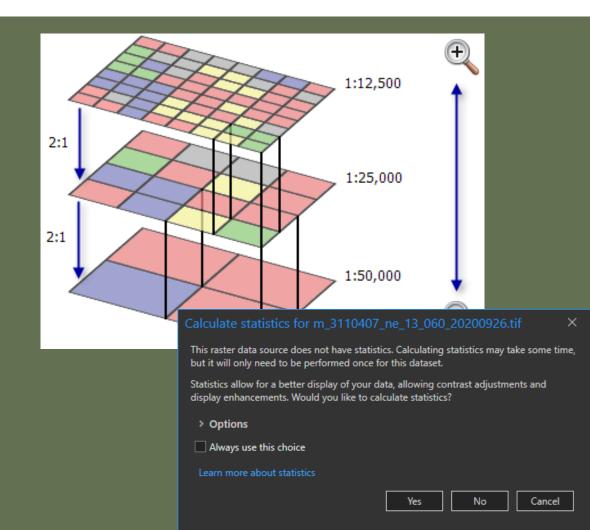
UNIQUE VALUES

	_						0
Layer Properties							? ×
General Source Extern	bisplay	Symbology	Fields Joins	& Relates			
Show: Unique Values Classified	Draw ras	ter assignin	Im	nport			
Stretched Colormap	-Value Fie	ld					
Discrete Color	CLASS_I	NAMES					-
	Symbol	<value></value>		Label		Count	<u>^</u>
		<all other="" td="" va<=""><td>alues></td><td><all other="" td="" va<=""><td>alues></td><td></td><td></td></all></td></all>	alues>	<all other="" td="" va<=""><td>alues></td><td></td><td></td></all>	alues>		
		<heading></heading>	>	Class_Nam	les		=
					scarps, cliffs, cany		
					g ridges and hills		
					carps, cliffs, canyo		
		moderately o		moderately o		15765298	-
			-		moist steep slopes		
		nearly level p	plateaus or te	rrace nearly level p	plateaus or terrace	80007863	-
	Add	i All Val <u>u</u> es		Add Values		Remove	<u> </u>
	Def	ault C <u>o</u> lors					
	C	<u>o</u> lormap	•		Display <u>N</u> oData as		31-
					ок	Cancel	Apply


SHADED RELIEF

 Can choose color scheme and illumination source for hill shade

pro.arcgis.com

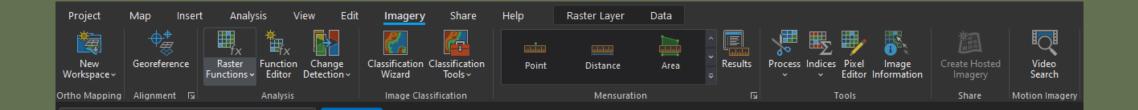

VECTOR FIELD

pro.arcgis.com

PYRAMIDS

- Downsampled version of the original raster
- Used to improve performance
- Each successive layer of the pyramid is downsampled at a scale of 2:1
- Create once and use many times
- *.ovr or *.rrd files
- Sampling
 - Nearest neighbor
 - Bilinear convolution
 - Cubic convolution

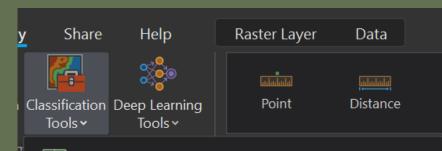
COMPRESSION


- Reduces file size
- Requires better CPU capabilities to decompress
- Possibly low resolution output
- Techniques: Transmission, Storage
- Types:
 - Lossy JPEG, JPEG 2000
 - Lossless LZW, LZ77, PackBits

PROJECTION

- Defining spatial reference system for a raster dataset will have an effect on the cells, as they are permanently resampled to fit this projection.
- Defining spatial reference system for a mosaic dataset does not effect cells but the projection is used to create the footprints, boundaries, or other features.
- Each time a raster dataset is transformed, cells are resampled effecting image and data quality.

ANALYSIS & PROCESSING


IMAGE ANALYSIS TOOLS

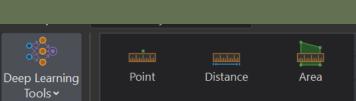
Project	Мар	Insert	Analy	ysis	View	Edit	Image	ery Shar	e Help	Raster Layer	Data							
🚅 In Beyond	[<none></none>	• [📕 Transp	oarency [0.0%	~	🖶 Swipe			🔀 DRA			🚱 Masking 🗸	*	0	\$	- *
📥 Out Beyond	ı [<none></none>	• 4	👌 Layer I	Blend	Normal	•	👸 Flicker 🗄	500.0 ms 🗘	Symbology Stretch	🕆 Lock stats	Resampling	Band		•	0	Ŷ	Rotation
🚈 Clear Limit				🕭 Featur		Normal				~ Type~		Type ~	Combination ~		γ –	1	.0 🗘	Туре∨
Vi	sibility R	ange			Effe	ects		Com	pare			Rendering				Enhancement		Rotation

	Project	Мар	Insert	Analysis	View E	dit	Imagery	Share	Help	Raster Layer	Data
l	₩ L				fx						
ľ	Add to Mosaic Dataset	Export Raster	Edit Function Chain	n Save Functio Chain	n Processir Template		Create Chart∽				
	Tools			Processing		٦	Visualize				

RASTER FUNCTIONS

Segmentation

Group neighboring pixels together based on their similarity, to create objects that are then used in image classification.



Training Samples Manager

Create and manage training samples for supervised classification.

Classify Categorize pixels into classes.

Label Objects for Deep Learning Create and manage labeled objects for deep learning.

Train Deep Learning Model Train deep learning model using an assisted workflow.

Review Deep Learning Models Review deep learning model metrics.

and a second second

Raster Funct	tions				? ~ Ț :
Find Raster Fun	octions				= ~ م
Project Syste	em Custom				
🕆 Analysis					
Binary Thresholding	CCDC Analysis	Compute Change	Detect Change Usi	Generate Trend	Sradient
Heat Index	Kernel Density	LandTrendr Analysis	NDVI	NDVI Colorized	Predict Using Trend
Process Raster Colle	Tasseled Cap (Kauth-Tho	Weighted Overlay	Weighted Sum	ー 新 Wind Chill	
 Appearance Classification Conversion Correction Data Manage Distance Distance Distance (Li Hydrology Math Math: Concologication Math: Logication Math: Trigoon Reclass SAR Statistical 	on gement egacy) litional				
 Surface Aspect Shaded 	Aspect-Slope	Contour Surface	Curvature	Elevation Void Fill	Hillshade

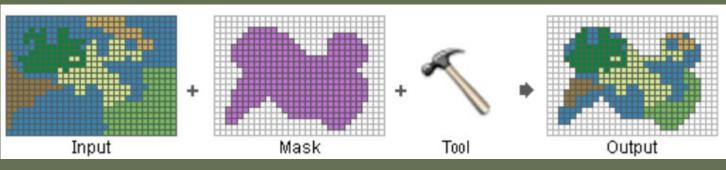
Parameters

Relief

RASTER FUNCTIONS VS GEOPROCESSING TOOLS

Geoprocessing Tools

- Creates new data on disk
- Can view and edit geoprocessing history
- Can batch process
- Can combine processes for complex modeling


Raster Functions

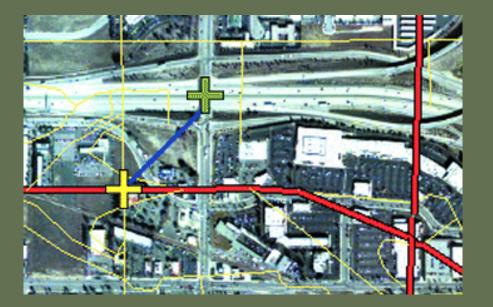
- No new dataset created
- Can view and edit raster function history
- On the fly processing and fast
- Create and use custom raster functions
- Generate processing templates for image services
- Can combine processes for complex modeling

•

ANALYSIS MASK

- The mask identifies those cells within the analysis extent that will not be considered when performing an operation or a function.
- All identified cells will be "out" and assigned to the nodata value on all subsequent output raster datasets.

pro.arcgis.com

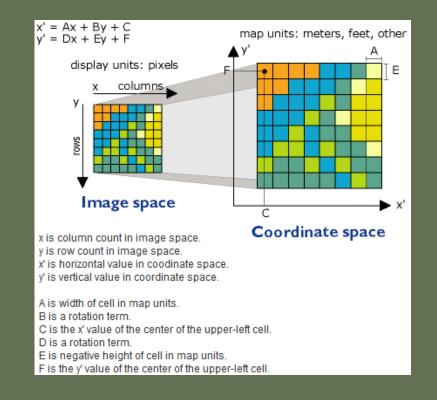

GEOREFERENCING

WHAT IS GEOREFERENCING?

- Georeferencing is the process of assigning real-world coordinates to each pixel of the raster.
- To align a raster image to a map coordinate system.
- Allows to view, query, and analyze the raster image with other geographic data.
- A georeferenced image will have coordinate system and projection of reference data.

CONTROL POINTS

- Locations that can be accurately identified on the raster dataset and in real-world coordinates.
- Examples: Road or stream intersections, the mouth of a stream, rock outcrops, the end of a jetty of land, etc.
- The connection between one control point on the raster dataset and the corresponding control point on the aligned target data is called a link.



HOW MANY CONTROL POINTS?

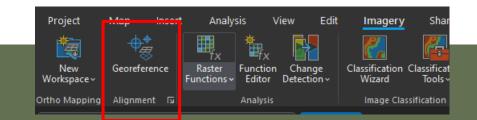
- Spread control points around image, try not to concentrate them in one area
- Typically, having at least one link near each corner of the raster dataset and a few throughout the interior produces the best results.
- The greater the overlap between the raster dataset and target data, the better the alignment results.
- Georeferenced data is only as accurate as the data to which it is aligned. To minimize errors, you should georeference to data that is at the highest resolution and largest scale for your needs.

TRANSFORMATION

- When you've created enough links, you can transform—or warp—the raster dataset to permanently match the map coordinates of the target data.
- Methods
 - Polynomial (Similarity, 1st, 2nd, 3rd or Zero order)
 - Spline
 - Adjust
 - Projective Transformation

ROOT MEAN SQUARE ERROR (RMSE)

- Distance measuring concept to compare expected with measured data.
- The error is the difference between where the from point ended up as opposed to the actual location that was specified.
- The total error is computed by taking the root mean square (RMS) sum of all the residuals to compute the RMS error.
- When the error is particularly large, you can remove and add control points to adjust the error.


E	→ Map: PWT_250_001.tif ×										
	🔩 🔩 🖹 🖣 💠 🔩 🙀 🎇 🚎 🗮 🗏 🧱 Ist Order Polynomial (Affine) 🔹										
		Link	Source X	Source Y	Мар Х	Мар Ү	Residual X	Residual Y	Residual		
	✓	1	1.657588	0.870051	572,250.062903	3,584,421.282140	1.861802	-4.344205	4.726355		
	\checkmark	2	6.984314	0.221634	572,742.549004	3,584,375.566604	-1.751694	4.087286	4.446835		
	\checkmark	3	7.930004	7.579800	572,831.078362	3,585,048.448344	1.293037	-3.017086	3.282492		
	\checkmark	4	0.787879	7.862756	572,163.410452	3,585,073.225746	-1.403145	3.274006	3.562012		

All residuals closer to zero are considered more accurate.

Georeferencing: PWT_250_001.tif

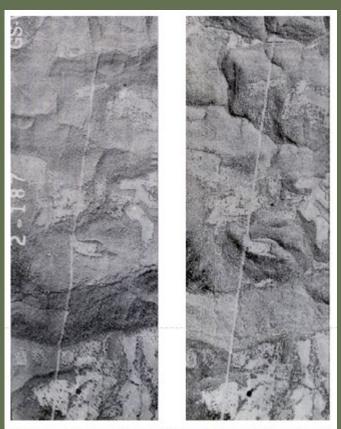
Transformation: 1st Order Polynomial (Affine Controls Points: 4 / 4 Total RMS Errors Forward: 4.048934 Inverse: 0.043942 Forward-Inverse: 0.000000

TOOLS

Project	Georeference	Мар	Insert	Analysis	View	Edit	Imagery	Share	Help							
🕅 Locate	🚓 🕀 Move			⊕_	- -	-+	Ì	🗲 🗲	to Apply		🔩 Select	🙀 Delete All		≱ 🔩		
Set SRS	Fit to	42 Fixed Rota		Auto			J Transformati	ion 🔍 App		Control	⊕r Zoom Io		Save Sav		Generate	Close
	Display 💮 Rotate			Georeference C				🕤 Rese	et	Point Table	$+_{\times}$ Delete		N	ew Control Point	s Report	Georeference
	Prepare					Adjust					Review			Save		Close

Zero Order Polynomial (Only Sl Requires at least 1 control point.	hift)
Similarity Polynomial Requires at least 3 control points.	
1st Order Polynomial (Affine) Requires at least 3 control points.	
2nd Order Polynomial	
Requires at least 6 control points.	
3rd Order Polynomial	
Requires at least 10 control points.	
Adjust	
Requires at least 3 control points.	
Projective	
Requires at least 4 control points.	
Spline	
spinie	

SAVING GEOREFERENCED RASTER

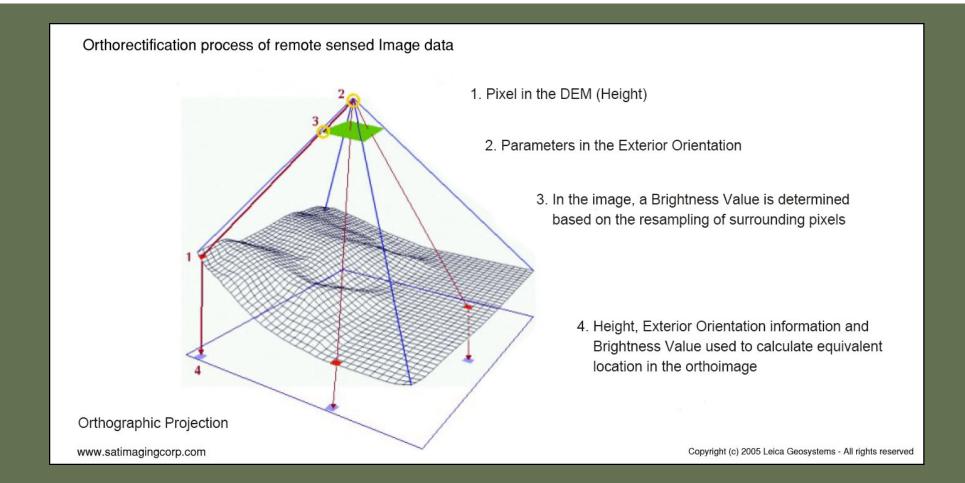

- Save as New permanently transforms your raster dataset (creates new dataset)
- Save stores transformation information in auxiliary files

- More information <u>http://desktop.arcgis.com/en/arcmap/latest/manage-</u> <u>data/raster-and-images/fundamentals-for-georeferencing-a-raster-dataset.htm</u>
- Video <u>https://www.youtube.com/watch?v=PHtxbpboDro</u>

ORTHORECTIFYING

ORTHORECTIFICATION

- The process of stretching the image to correct geometric distortion and match the spatial accuracy of a map by considering location, elevation, and sensor information.
- Distortions in the images due to distortions from the sensor and the earth's terrain.
- Ortho Mapping involves edgematching, cutline generation, and color balancing for multiple images to produce an orthomosaic dataset.



Above are 2 images of the same geographic area. Note the road that passes through the mountains. In the left "raw" or unrectified image, the road appears to be crooked when in fact it is not. The image on the right has been rectified image and the road appears planimetrically correct.

PROCESS

- Requirements:
 - An accurate description of the sensor, typically called the sensor model
 - Detailed information about the sensor location and orientation for every image
 - An accurate terrain model
- An accurate orthorectified raster dataset can be produced using the rational polynomial coefficients (RPCs), if they are provided by the vendor, and an accurate digital elevation model (DEM).
- Spatial location in the image of a pixel can be improved by applying the information within the associated RPC file, that is, the coefficient to the latitude, longitude, and height value of the pixel.

ORTHORECTIFICATION

